Mechanics of Solids: Energetics

The motion of a continuum is governed by the two laws of thermodynamics

1. The first law is about the conservation of energy of a continuum
2. The second law is about the entropy of a continuum

Here we review these laws and examine
- their effects in the nature of constitutive equations
- introduce the potential energy for linear elastic materials

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deuville, PPUR 2018.
2. ) Botsis, Class Notes given during the course



Continuum mechanics review: Energetics

Energy and power involved during the motion of a continuum
Let u,;-'(l‘) be the material volume of a continuous medium at time 7, such
that w(t) C R, the deformed configuration of the body I3 . The velocity of the

motion is v (@, t) and the material density plx,t).

1) - >t
1. The kinetic energy of w(f)is the scalar defined by the integral: —— . (1) = / p(m‘f_)”('x' )f v(z, t)

w(t) -

2. Theinternal energy ofw(f) is the scalar defined by : ;Emt(f) — / p(:l‘}. f) 'H.(:B‘ f) duv
Here -u.(:r. 1‘_) is the internal energy per unit mass w
containing contributions from motion at the microscopic
of molecular motion, vibrations, ...

3. The power of the volume forces given by the volume integral : —— / plx,t)b(x,t)-v(x,t)dv
o)

4. The power of the contact forces given by the surface integral : —— / t.-vds — / on - v ds
which takes the form after using the divergence theorem O B

dv (A)

(B)

(C)

/ on-vds = /((_divcr) -v+0:Vov)dv
Jw w

(D)
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Heat transfer involved during the motion of a continuum

Another form of energy passed to the material is heat. This type
of energy is in two forms:

1. Production/consumption in the body |3 expressed as : > / !(iI? t) dv (E)
Here r(x,t) isthe heat produced/received per w
unit time and volume. It may be due to chemical
reaction, Joule effects...

2. Heat flow to the body through its boundary Jw given by : —— — q-nds
Here g(@. 1) is the heat flux vector and n is the vector Ow

normal to the surface ds.
—/ q-nds= —/ div g dv| (F)
ow W

This integral is transformed to a volume integral which is :

v
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FIRST PRINCIPLE OF THERMODYNAMICS: ENERGY BALANCE

The time derivative of the total energy in B is equal to the sum of the power of the volume and contact forces and the
rate of heat received by the material.

We combine relations (A) to (F) to express this principle as the following balance:

% ’ p (? 1 u) dv = /w(pb v +div(ov) — divg + r) dv

Using Reynolds’s theorem and the principle of conservation of momentum (equations of motion), the energy
balance equation (or conservation of internal energy) takes the local form:

Du v liv - Note that the term o : Vv can be modified as follows.
P Dt g Vv —divg 1 In index form we can write successively having in mind that 0, =0 ; :

3 {)1‘@ o {’)U.i o 'f}l.-‘j o 1 N ﬁ)-v.i E:)'l-‘j — giid _ d.. — ('ZE.ij
T 9e, T or,  Tor, ~ 279\ g, Tog, ) T Tu%| WG =Ty
T 2 € €Ty .
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CONSERVATION OF MECHANICAL ENERGY

lgnoring the thermal effects the energy conservation takes the form:

D . _ _ [ Dyv-oy, [ Du.
E(Ek:(t)+E1I1t-(t)) /wth( 9 )(ZI+LQ Dt dv

—/ pb-vdzwr/ t-vds.
w Ow
. Du :
And the internal energy balance pﬁ — o : Vv —div qy‘/ becomes:

pdzp%a:V'v with o:Vv=0:d

=) ou=0:.d

Balance of mechanical energy:

D 0. 'v) / / /
dv -+ o :.ddv= b-vdv+ t-vds
/w' g Dt ( 2 W W g dw
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CONSERVATION OF MIECHANICAL ENERGY

Balance of mechanical energy:

'] D (,l) . v) /n \/ﬁ /n
dv + o:ddv = b-vdv—+ t-vds
/L,u : Dt 2 W ( : dw

W

The last energy balance equation is expressed in Spatial coordinates.
Implementing the equation of motion we can express it in material coordinates.

D [(V.V
P
o D ( 2

:/ P()B-V(iV+/ T-VdS.
Q 99

>dV+/ P:.Fdv
Q

An important result out of this analysis is the following power equality:

J,o-'zl.:P()U:JO':d:P:F:S:E

where "U-(X(X: t), t) =U(X.t) and Jis the jacobian parameter.
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SECOND PRINCIPLE OF THERMODYNAMICS: RAMIFICATIONS OF ENTROPY

For a material volume, the material derivative of entropy is always greater than or equal to the sum of the
distribution of entropy sources in the body and the entropy flux across the surface:

d ] ] q - n
o7l paca —ca— T

Here s is the entropy per unit mass. By applying the Reynold’s transport theorem,
and accounting for the conservation of mass and the divergence theorem for the surface integral,

we obtain the local form as follows:
Da > r I (g)
— — — d1v
Df T T
Du

Eliminating the term r using, ‘Oﬁ —o:Vv—divg+r

we obtain the Clausius-Duhem inequality, which must be satisfied by any thermodynamic process:

Ds Du 1
"Dt =T (’JD_J d) 21V
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SECOND PRINCIPLE OF THERMODYNAMICS

Ds_ 1/ Du 1
Ds 1 ( Du_ 1o
th‘T(th ? d>+T2q Vi

We introduce the Helmholtz specific free energy f and eliminate the term with the entropy rate,

D D D DT
fou—Ts mp2s__ P pDu_ DT
Dt I Dt T Dt Dt

Introduce it in the Clausius - Duhem inequality to obtain:

Note that the Clausius-Duhem inequality can also be easily expressed in the
material description. In that case, the contact force power o : d can be expressedas P : F

Where P is the first Piolla-Kirchhoff stress tensor and F is the rate of the deformation gradient

tensor F.
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SECOND PRINCIPLE OF THERMODYNAMICS FOR CLASSICAL ELASTICITY

1. Consider an elastic solid subjected to small displacements and infinitesimal
strains.

2. We express all quantities in terms of their material description and use
lowercase symbols for convenience.

3. We assume that geometric changes are negligible and that the deformation
process takes place slowly enough so that thermodynamic equilibrium is
maintained in the entire body at all times.

In this case, the internal energy and Helmholtz free energy densities are: —— u = -"u.(&*,_ l) f = f(E,_ l)
We consider adiabatic process ¢ = 0.

Due to the assumed reversibility of all phenomena and small strains, d = & the
Clausius- Duhem inequality becomes an equality:

Df _ DT q-VT &_& - ﬂ D_j
- —7 ’O(Dt lDt>—a.€—p(Dt+5Dt

A 4
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SECOND PRINCIPLE OF THERMODYNAMICS FOR CLASSICAL ELASTICITY

0
éada—sdT—df S—%
/
f=7fleT)e==> df = gl.j+§—§dT

Helmholtz Free Energy is a stress potential
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SECOND PRINCIPLE OF THERMODYNAMICS FOR CLASSICAL ELASTICITY

The results show that for an adiabatic process the free energy f is a potential for the stress
tensor 0/,0 and entropy s.

>

1
P

of
e ij

J]

!Sa : -

oT

Consider an isothermal process. In this case the free energy f is only a function only of Eij.

Expand f in the neighborhood of the natural state ( o;;

df

f=1Jo+

Consider the identity

D45 |

U‘:

— () to obtain:

i+ - ‘ (f — fo) is quadratic in Eij
) C .

S (of ~ o)) = 4 (= fo)
£ij =17 ‘”13

W: is a strain energy for

adiabatic or isothermal
processes.

/

Due to the kinematic linearization —— 9 = pg(l T O(:)) ~ Po

"= p(f — fo)

OW
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THERMOELASTICITY

Assumption of small strains and displacements and small

deviations from a reference temperature 7, .

For an approximate theory, we expand f(
neighborhoodof ¢ = () and 7 — 1o

Zero stress for £ =0and [’

— [ thus, nolineartermsin € .

E. T) in a Taylor series in the

until the quadratic term.

. For an isotropic material

) .
pf = pfo—pso(T —1o) + gouekk | G A |
== | vpegen T T T =102 | —(3) 4 2p)azsu(T — To)
| OFf ——
"Oij = p(-':),ﬁ = Ackk élj - 2:“%3 (3)\ T );U)G(T TG) daj
From the definition i —_—
1 of A \
Sy = 1
p 7 ey or |7 2, ( (‘2’“‘“(TI ffffffff To) - N+ o ") d )

Terms due to temperature.
o the thermal expansion coefficient

_________________________________________________________________
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THERMOELASTICITY: STRESS-STRAIN-TEMPERATURE RELATIONS

1 A
= 20T — T —
€ o (cr + ( pa(1T —1Tp) N on tI O‘) I)
1
&, = E<(l +v)o,, —vakkél.j)Jr 00, AT

0ij = Aerk 0ij + 2pgi; — (SN 4+ 2p) (1" — 1) 045 -

A\ 4

1
&, = E(GH —V0,, —v033)+0cAT;

1
Eyy = E(a22 — V0O, —v011)+0¢AT;

1
Ex3 :E(J33 — Vo, —v022)+0cAT;

1 . 1 . 1
€12 _E 12> €3 :E 23 G311 TS

E E
o, = ((1=v)e,, +vey, +vey, ) - aAT;
(1+v)(1-2v) —2v
E E
0, = ((1=v)ey, +vey, +ve, ) - aAT;
(1+v)(1-2v) —2v
E E
Oy = ((1 — V)&, + Ve, +VE,, ) — aAT’
(1+v)(1-2v) —2v
E . E . E
0, :Eglza 093 :Egma 03 :Egﬂ




	Mechanics of Solids: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics
	Continuum mechanics review: Energetics

