
Mechanics of Solids: Energetics

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018.
2. J Botsis, Class Notes given during the course

The motion of a continuum is governed by the two laws of thermodynamics

1. The first law is about the conservation of energy of a continuum
2. The second law is about the entropy of a continuum

Here we review these laws and examine 
- their effects in the nature of constitutive equations
- introduce the potential energy for linear elastic materials



Continuum mechanics review: Energetics
Energy and power involved during the motion of a continuum
Let              be the material volume of a continuous medium at time     , such
that                        , the deformed configuration of the body      .  The velocity of the
motion is                 and the material density 

1.    The kinetic energy of            is the scalar defined by the integral:

2.    The internal energy of            is the scalar defined by :
Here                  is the internal energy per unit mass
containing contributions from motion at the microscopic 
of molecular motion, vibrations, …

3. The power of the volume forces given by the volume integral :

4. The power of the contact forces given by the surface integral :
which takes the form after using the divergence theorem

(A)

(B)

(C)

(D)



Continuum mechanics review: Energetics
Heat transfer involved during the motion of a continuum

Another form of energy passed to the material is heat. This type
of energy is in two forms:

1. Production/consumption in the body       expressed as : 
Here                 is the heat produced/received per
unit time and volume.  It may be due to chemical 
reaction, Joule effects…

2. Heat flow to the body through its boundary          given by :
Here                 is the heat flux vector and n is the vector
normal to the surface ds.

This integral is transformed to a volume integral which is :  

(E)

(F)



Continuum mechanics review: Energetics
FIRST PRINCIPLE OF THERMODYNAMICS: ENERGY BALANCE

The time derivative of the total energy in       is equal to the sum of the power of the volume and contact forces and the
rate of heat received by the material.

We combine relations (A) to (F) to express this principle as the following balance:

Using Reynolds’s theorem and the principle of conservation of momentum (equations of motion), the energy
balance equation (or conservation of internal energy) takes the local form:

Note that the term                   can be modified as follows.
In index form we can write successively  having in mind that                   :ij jiσ σ=

with



Continuum mechanics review: Energetics
CONSERVATION OF MECHANICAL ENERGY

Ignoring the thermal effects the energy conservation takes the form:

And the internal energy balance                                                               becomes:

with

Balance of mechanical energy:

u =ρ
:u d=ρ σ



Continuum mechanics review: Energetics
CONSERVATION OF MECHANICAL ENERGY

Balance of mechanical energy:

The last energy balance  equation is expressed in Spatial coordinates. 
Implementing the equation of motion we can express it in material coordinates. 

An important result out of this analysis is the following power equality: 

where                                                    and J is the jacobian parameter.



Continuum mechanics review: Energetics
SECOND PRINCIPLE OF THERMODYNAMICS: RAMIFICATIONS OF ENTROPY

For a material volume, the material derivative of entropy is always greater than or equal to the sum of the
distribution of entropy sources in the body and the entropy flux across the surface:

Here s is the entropy per unit mass.  By applying the Reynold’s transport theorem, 
and accounting for the conservation of mass and the divergence theorem for the surface integral, 
we obtain the local form as follows:

Eliminating the term r using, 

we obtain the Clausius-Duhem inequality, which must be satisfied by any thermodynamic process:



Continuum mechanics review: Energetics
SECOND PRINCIPLE OF THERMODYNAMICS

We introduce the Helmholtz specific free energy         and  eliminate the term with the entropy rate,

Introduce it in the Clausius - Duhem inequality to obtain:

Use                                                

Note that the Clausius-Duhem inequality  can also be easily expressed in the
material description. In that case, the contact force power                  can be expressed as 
Where P is the first Piolla-Kirchhoff stress tensor and       is the rate of the deformation gradient 
tensor F.

Ds Df Du DTs
Dt T Dt T Dt Dt

ρ ρρ ρ⇒ = − + −

f



Continuum mechanics review: Energetics
SECOND PRINCIPLE OF THERMODYNAMICS FOR CLASSICAL ELASTICITY

1. Consider an elastic solid subjected to small displacements and infinitesimal
strains. 

2. We express all quantities in terms of their material description and use 
lowercase symbols for convenience. 

3. We assume that geometric changes are negligible and that the deformation 
process takes place slowly enough so that thermodynamic equilibrium is 
maintained in the entire body at all times.  

In this case, the internal energy and Helmholtz free energy densities are: 

We consider adiabatic process q = 0. 

Due to the assumed reversibility of all phenomena and small strains,                  the 
Clausius- Duhem inequality becomes an equality:



Continuum mechanics review: Energetics
SECOND PRINCIPLE OF THERMODYNAMICS FOR CLASSICAL ELASTICITY

ij
ij

f fdf d dT
T

ε
ε
∂ ∂

= +
∂ ∂

Helmholtz Free Energy is a stress potential



Continuum mechanics review: Energetics
SECOND PRINCIPLE OF THERMODYNAMICS FOR CLASSICAL ELASTICITY

The results  show that  for an adiabatic process the free energy  f is a potential for the stress 
tensor               and entropy  s:

Consider an isothermal process. In this case the free energy  f is only a function only of        .

Expand f in the neighborhood of the natural state                          to obtain:

/σ ρ

is quadratic in 

Consider the identity                                                                                                     

Due to the kinematic linearization

W: is a strain energy for 
adiabatic or isothermal 
processes.



Continuum mechanics review: Energetics
THERMOELASTICITY
Assumption of small strains and displacements and small
deviations from a reference temperature        . 

For an approximate theory, we expand                     in a Taylor series in the
neighborhood of                    and                         until the quadratic term. 

Zero stress for       = 0 and                       thus, no linear terms in      . For an isotropic material 

From the definition

or

Terms due to temperature. 
α the thermal expansion coefficient



Continuum mechanics review: Energetics
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THERMOELASTICITY: STRESS-STRAIN-TEMPERATURE RELATIONS
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